
Skype Traffic Identification

Marcell Perényi, András Gefferth, Trang Dinh Dang and Sándor Molnár
Budapest University of Technology and Economics,

Department of Telecommunications and Media Informatics, Budapest, Hungary
Email: {perenyim, gefferth, trang, molnar}@tmit.bme.hu

Abstract – Skype uses strong encryption to secure

communication inside the whole Skype network. Clients choose
communication ports randomly. Therefore, traditional port
based or payload based identification of Skype traffic is not
feasible. In this paper we introduce a novel flow dynamics based
identification method to discover Skype host and voice calls as
well. Our method only uses packet headers and the extracted
flow level information. The whole identification process is
scripted in Transact-SQL, thus it can be executed automatically.
We also present the validation of the algorithm together with
some analyses of the identification results.

Keywords – Skype, traffic identification, analysis

I. INTRODUCTION

Skype is a P2P VoIP network. It allows users to initiate and
receive voice calls to/from other Skype (or even PSTN) users.
In addition, instant messaging (chat) and file transfer is also
possible within the Skype infrastructure.

Our goal is to analyze Skype traffic from a network operator
point of view. Network operators might be interested in the
nature of the traffic carried by their networks in order to
optimize network performance and forecast future needs. They
also want to identify and study popular applications and
services for marketing purposes.

Skype traffic needs to be identified first. This is not trivial,
since there is no unique standard port for Skype traffic, the
protocol is not public, the data is encrypted and different
software versions behave differently. Furthermore, the Skype
binary uses a variety of techniques to prevent reverse
engineering [8].

Several attempts for Skype identification are made. Ehlert et
al. [1] describe a method for identification using traffic
patterns and payload information from Skype login phase. For
efficient blocking Skype activity has to be identified. Methods
for blocking are published (see e.g. [2]), but these are tailored
to a given firewall type or security setting and assume that
Skype communication starts after enabling the blocking
mechanism. Suh et al. [7] present a method for the detection of
relayed traffic by comparing input and output traffic patterns.

Guha et al. [3] present some results about Skype usage
patterns. Their results are based on active measurements and
provide global information about the number of clients, the
number of super nodes (see next Section) and general traffic
patterns of a single Skype session.

Kuan-Ta Chen et al. [4] describe an identification method
for relayed Skype flows. Some of the characteristic flow

properties they examine to select Skype voice sessions are
similar to that of ours. However, they aim to detect relayed
flows only, and use the collected data for investigating
correlation between call duration and voice quality.

In our approach we aimed at detecting Skype traffic even if
the Skype client was started before the traffic measurement, in
which case we cannot rely on some typical login traffic
patterns or payload information. We also wanted to detect all
Skype traffic regardless of software version and to avoid the
use of payload information which is often not available.

II. SKYPE OVERVIEW

Here we give a brief overview of Skype focusing on those
aspects that will be needed for our detection algorithm. A
detailed description can be found, for instance, in [5] and [9].

A. Skype Components
The Skype P2P network consists of the following elements:

ordinary nodes (clients), super nodes (SNs), login servers,
update servers and buddy-list servers.

An ordinary node is a leaf-node of the Skype overlay
network; it is the equipment of the user that is used for the
communication. SNs are the switching elements in the overlay
network responsible for maintaining a Global Index
distributed directory which allows users to find each other.
Each SN keeps track of a small number of ordinary nodes.
SNs can also function as ordinary nodes, and in fact every
ordinary node with public IP address and sufficient
capabilities (free CPU, memory, bandwidth capacity) is a
candidate to become a SN.

 The login server stores the account information of users. It
is responsible for user authentication at the beginning of the
session, i.e. when the client is started. According to our
observation there are several login servers storing information
in a distributed way.

The update server (212.72.49.131:80) is also contacted by
the client after it starts to check whether a newer version of the
software is available.

The so-called buddy-list server [5] is responsible for storing
the contact list of the users. Although this list is stored locally
on the host computer, the role of this entity is to make sure
that the contact list is also available if the user logs on from
another host. Therefore, this server is contacted when changes
in the contact list occur, or the user is logged in from a

different host than the previous time. Known buddy-list
servers include 212.72.49.142 and 195.215.8.142 [1].

B. Skype operation
When a Skype client is launched it tries to establish a

connection with a SN. For the duration of the session this SN
will be responsible for the client. The client first contacts
several (about 20) SNs to investigate whether they are alive
and ready to accept the client. After some message exchange
the client selects one of the SNs to establish a connection.

An initial set of SNs (bootstrap SNs) is hard-coded in the
executable. These are operated by Skype. Upon the first run of
the client these SNs are contacted, but a list of other SNs is
retrieved and stored by the client. When the client is started
for the next and all subsequent times the stored SNs are used.

At startup the client also contacts one of the login servers
for authentication. Although there are several login servers,
we have found that Skype clients in our measurements always
connected to either of the following two servers:
212.72.49.141 or 195.215.8.141. The connection to the login
server might be relayed by a SN, for example when direct
connection is blocked, but the connection might be relayed
even if the direct communication would be possible.

When the user is on-line, there is a periodic message
exchange between the host of the user and the selected SN.

III. SKYPE IDENTIFICATION

Although the application-layer protocol of Skype is
concealed, we can still monitor the network and transport
layer protocols and analyze the used IP addresses and ports.
The statistical characteristics of the Skype data flows and
packets can be studied as well, including flow bandwidths,
packet sizes and several other properties. Our proposed
identification method is based on these observable open parts
of the Skype communication.

Unfortunately, the regular check for software updates does
not guarantee that every client runs the latest version of Skype,
therefore we need to deal with the behavior of different
versions of clients. Although we did not have a chance to
analyze each client, we based our identification algorithm on
those properties which seem to be invariant amongst different
software versions. In this section we first present a method to
detect Skype activity even if no calls are made, then we
present our method for the detection of Skype voice calls.

C. Filtering out known applications
The first step of our algorithm is to identify traffic of

known, non-Skype applications. A database of popular
applications is used, which contains default TCP and UDP
communication ports for known applications. TCP port 80 is
considered as an exception, since besides HTTP it is also used
by Skype.

D. Skype specific connections
In the next step we look for Skype-specific connections,

such as the connection to a login server, buddy-list server or
bootstrap SN. The occurrence of any of these infers the

presence of Skype, since these connections are very unlikely
to be initiated by non-Skype applications. On the other hand
these connections are not necessarily present (or visible)
during a Skype communication:

The connection to the login server is in some cases relayed
through a SN and therefore invisible.

The connection to one (or more) of the bootstrap SNs is
necessarily attempted at the first execution of the application,
but during subsequent executions the host may choose to
contact other SNs.

The buddy-list server is contacted only in the cases
mentioned in Section II.

There are also some kinds of connections which are not
unique, but characteristic to Skype. We have found two of
these:

The connection to the update server is initiated at the
beginning of the session. However, the same IP and port is
used, in some cases, to reach the www.skype.com web server.

A TCP connection to port 33033 is likely to be initiated by
a Skype client, since this is the default port for SN
connections.

It is very unlikely that both of these connections are present
if the host does not run a Skype client; therefore, we decided
to conclude on Skype presence if both of these are found.

E. A method for Skype signal flow identification
It is possible that the user logged on to Skype before the

traffic measurement began. In such a case we cannot detect
login, buddy-list update or software update attempt.
Furthermore, even if these connections can be observed they
give no indication for the end time of the session. Therefore
we investigated Skype network activity to find characteristic
traffic patterns that last for the entire duration of the session.

A Skype client maintains one permanent connection to a SN
while the user is logged on to the Skype network. At startup
the client tries to establish several outbound connections to
find an appropriate SN. After a few seconds these transient
connections are terminated, and only one or two permanent
TCP connections remain. One of these connections has a
traffic pattern which can relatively easily be identified. Data
packets are limited in size and both inbound and outbound
flows (belonging to the specific TCP connection) have
restricted bandwidth and packet intensity. In addition, the
timing of outgoing packets follows a well-defined pattern. The
connection persists as long as the user is logged on to Skype.
Due to these properties we selected this flow to be scanned in
order to identify Skype clients, and constructed a method to
identify such flows.

In some cases we observed that the original signaling
connection was replaced by a new one with exactly the same
properties. It was possibly caused by the original SN going
offline due to a failure or other problem. Nevertheless, the
signaling flows are generally long enough to be detected.
Long duration of the signaling flow is a key issue, since the
proposed algorithm utilizes statistical properties among others.

Based on widespread analysis of Skype signaling
connections we regard a TCP connection as a Skype signaling
connection if it obeys all of the following rules:
1. Outbound and inbound data rate is not larger than 40

byte/sec,
2. Number of packets per second (in outbound and inbound

direction separately) is not larger than 0.4 packets/sec,
3. Every packet in outbound direction is smaller than 1000

bytes (including IP and TCP headers),
4. Periodicity of 1 minute is observable for outbound

packets of size between 70 byte and 250 byte. E.g. a
certain percentage of packets (between 70 B and 250 B in
size) arrive in a specific, periodic time slot.

The unique time behavior of signaling flows is caught by
the 4th rule. We realized that most of the outgoing data packets
are rather small except for some special packets. The
exceptional packets have relatively much larger packet size
(between 70 B and 250 B including IP and TCP headers), and
an inter-arrival time of one minute. We assume that these
packets are some periodic keep-alive messages of the client to
the SN.

Unfortunately, the picture is not that clear: some factors
make the identification more difficult. Occasionally, out-of-
period packets appear in the outbound flows, a few of these
packets fall into the interval of 70 and 250 bytes. Sometimes
keep-alive messages happen to drop out, though periodicity is
still preserved (no shifting). In some cases (perhaps when the
user has few contacts on his/her buddy-list) the size of the
keep-alive messages is not significantly larger than that of
other packets in the outbound flow, which results in unclear
separation of keep-alive packets. However, when the user
initiates a voice call (becomes active), the size of keep-alive
messages increases and falls into the specified interval in all
investigated cases. After finishing the voice call the size of
keep-alive packets usually returns to its original value.

We chose a simple method for detecting periodicity in Rule
4. The modulo 60 remainder is calculated for the arrival time
(measured in seconds) of every packet (with packet size
between 70 and 250 B), which is then rounded to the closest
integer. This yields a time slot of 1 second. Then we calculate
the distribution (histogram) of modulo 60 remainders, and
mark every remainder where the frequency of the remainder in
the histogram is over a certain threshold (0.08). The
connections considered as Skype signaling are the ones for
which only one remainder is over the threshold, i.e. only one
remainder is significant. We chose this technique to detect
periodicity, for it is adequate, fast, simple and easy to
implement in SQL. However, other techniques could also be
applied, e.g. DFT or wavelet transform.

Minor shifting (few ten milliseconds) was observed in the
arrival times of the periodic keep-alive packets, which was
most likely due to the inaccuracy of the internal clock of the
host computer. This can cause two significant modulo 60
remainders (next to each other) to appear in the histogram.
This problem can be avoided by shifting the arrival process by

0.5 second (adding 0.5 to each arrival time), and calculating
the above mentioned histogram for this new process. If the
periodicity is present, then at least either of the original and
the shifted process will reveal it. We could only find few new
signaling flows with this technique.

Although in theory other applications might generate similar
traffic patterns, in our experience we could not find any.
Therefore, if such a pattern is found we attribute it to Skype.

F. Method for Skype voice-traffic identification
Our final objective is to identify Skype voice calls. At the

time of installation Skype chooses a random port as the default
port for both TCP and UDP communication, thus port based
voice traffic identification is not possible.

Skype prefers UDP as the primary transport protocol, and
switches to TCP whenever UDP communication is restricted.
It adapts quickly to changing network conditions by switching
voice codec and transport protocol even in the middle of a
call.

ISAC and iLBC codecs are used in both TCP and UDP
cases. All codecs adapt their transfer rate and packet size to
the available link capacity; consequently we can only set up a
lower and an upper threshold as preliminary filter conditions
for voice flows. According to our experiences the average
voice packet size varies from 40 B to as high as 320 B, while a
speech flow in one direction has a bandwidth of 20 Kbit/sec to
80 Kbit/sec. Therefore, we defined a loose upper bound of 400
B for packet size and 128 kilobit/sec for flow bandwidth.
Flows failing to match any of these criteria are discarded.

In order to discover real Skype flows we had to find some
more characteristic properties. Skype codecs have basically
constant bit rate, even if the parameters of the codec, like
packet size, bit rate, inter-arrival time, might be dynamically
modified as a reaction to high delay, jitter or packet loss. The
inter-arrival time of voice packets was either 30 ms or 60 ms
in all measurements, which results in a packet rate of 33 or 16
packets per second respectively. In case of a TCP connection
and obsolete Skype clients we also detected an inter-arrival
time of 20 ms (50 packets per second). This property was
confirmed by our measurements and by several other studies
as well. In addition, the inter-arrival times of voice packets
(together with other technical information including used
codec) are visible in a popup during voice calls, when the
appropriate setting is switched on in the client software.

Fortunately, the packet rate can be calculated and checked
at flow level, knowing the arrival time, end time and the
number of packets in the flow; hence flows not corresponding
to this condition can be discarded. However, we cannot expect
that packet rate will be exactly 33 or 16 for all Skype flows,
which makes identification of speech flows more problematic.
The main reason is that a voice call begins and ends not
exactly at the time when the corresponding UDP (or TCP)
connection starts and finishes. In addition, there is some
transient behavior at the beginning of the session, when the
bandwidth, packet rate (and packet-size) differ significantly
from the properties in steady state. Furthermore, the end of

UDP “flows” is not well-defined, but only indicated by a
timeout. After the call has finished there are still “stray” UDP
packets transferred, which makes it difficult to accurately
determine the end of the flow. To make things worse, the used
codec and the occupied bandwidth might change during a call
when necessitated by the changes in network conditions. Apart
from this, packet rate is still a suitable property to decrease the
number of candidate speech flows. A rate of 13 packets/sec is
chosen as a lower bound and 53 packets/sec as an upper
bound. Flows not corresponding to the packet rate condition
are discarded. For all these reasons flow-level properties are
not enough for the recognition of Skype speech flows, and the
identification method should include some packet-level
characteristics as well. We found inter-arrival time as the most
characteristic property. We calculate the distribution
(histogram) of inter arrival times for each remaining flow and
mark the highest value (the main mode) of the histogram.

Figure 1. Flowchart of Skype speech flow identification method

Afterwards, inbound and outbound flows are paired to one

another to create voice connections (sessions). The terms of
pairing are the following: arrival time and end time of inbound
and outbound flows are required to be close to one another,
and also source address, source port, destination address and
destination port should correspond to each other.

In Skype it is possible that the inbound and outbound
directions of a voice session are served by different TCP
connections. In this case the similarity of source and
destination ports is not required.

In the last step those connections are selected for which the
main mode of both inbound and outbound flows has a value of
20, 30 or 60 (ms), and source IP is among the previously
identified Skype hosts. The whole identification process is
shown in Fig. 1.

It is possible that some non-Skype flows meet some of the
conditions. However, it is unlikely that flows other than Skype

(even flows generated by other VoIP applications) meet all the
conditions. In addition, the list of Skype sources, which was
identified in a previous step, is also used to avoid
misdetection.

IV. TRAFFIC MEASUREMENT

Two traffic measurements were conducted; the summary of
the data sets is presented in Table I.

The first measurement (called Callrecords 2) was carried
out at one of the largest Internet providers in Hungary in April
2006. In the chosen network segment the traffic of about 1000
ADSL subscribers is multiplexed before entering the ATM
access network. The logging was performed in one of the
routers at the border of the access and the core networks.
Further details of the measurement configuration are presented
in [10].

In the second measurement (Verification) the traffic of our
university department was logged, carrying the traffic of about
one hundred users. We performed this experimental traffic
logging to validate our Skype identification method.

In both measurements only IP and TCP/UDP headers were
logged. Flow level information was extracted from the traces
including source addresses, ports, packet number, transmitted
bytes, start time and end time of the flow. Packet level
information (packet size, packet arrival-time) was also
preserved and used for the identification.

TABLE I.
DATA SETS USED FOR SKYPE TRAFFIC IDENTIFICATION

Data set

Time of
measurement

From - To

Number
of flows

Total
traffic
(GB)

Verification

Callrecords 2

07. 11. 2006 10h
08. 11. 2006 16h
25. 04. 2006 11h
26. 04. 2006 11h

1 663 752

36 896 516

61.42

766.02

Both inbound and outbound traffic were logged, since data

from both directions is necessary for accurate identification.
However, our method can also be applied if only one direction
is available, but the reliability decreases, since inbound and
outbound speech flows cannot be paired to each other.
Therefore, we recommend using our method in edge routers,
where inbound and outbound traffic flows are carried through
the same router. This is not necessarily true in backbone
routers due to asymmetric routing.

V. VALIDATION

The validation of the identification algorithm raises a couple
of questions. For an exhaustive validation of our algorithm we
need a large number of verified Skype signaling and voice
flows from several clients. It is not easy to build such a
managed environment.

The purpose of this validation is to verify the parameters of
the identification method. These parameters were determined
based on several local measurements on single computers in

different types of network environments (e.g. LAN access,
ADSL, dial-in access, etc).

12 14 16 18 20 22 0 2 4 6 8 10
10

15

20

25

30

35

40

45

50

55

N
um

be
r o

f S
ky

pe
 u

se
rs

 lo
gg

ed
 o

n

time(h)

Skype users

Figure 2. Daily fluctuation of the number of Skype users based on signal flow

activity

12 14 16 18 20 22 0 2 4 6 8 10
0

1

2

3

4

5

N
um

be
r o

f a
ct

iv
e

S
ky

pe
 c

al
ls

time(h)

Skype calls

Figure 3. Daily fluctuation of the number of active calls in the network

We carried out an experimental traffic measurement in our

university department. After the logging has finished, we
interviewed all the colleagues whether a Skype client was
running on their computer and whether they made any calls
during the logging period. In addition, we also collected all the
history logs of the clients, which contain exact information of
the calls, e.g. date, time and call duration.

Then we applied our identification method to the
experimental data set to detect Skype hosts together with
Skype calls. Based on the comparison of detected Skype hosts
and known Skype hosts from the user feedback we state that
both host and voice call identification methods work well.
Especially, the signal flow identification method got good
marks: we could not observe any mistakes. Update
connections were also detected in most of the cases. Login-,
Buddy-list- and SN connection were rarely identified.

All Skype calls extracted from history logs were detected as
well. We did not experience any false positive or false
negative mistakes.

The validation study, however, cannot be considered as an
exhaustive verification of the identification methods, since all
Skype voice calls were made in an ideal network environment
(100 Mbit Ethernet). Thus always the best-quality Skype
codec was used by the clients.

VI. TRAFFIC ANALYSIS

In this section we present the results of our analysis of the
Callrecords 2 dataset.

In Fig. 2 the daily fluctuation of Skype users is presented
based on recognizable signaling connections. Users not
sustaining visible signaling connection cannot be taken into
account, since only a single event (login, update, etc.) can be
detected and we do not know when the user leaves the Skype
network. Therefore the real number of logged-on Skype users
can be somewhat higher.

We can realize that the number of Skype users logged on to
the network follows the general daily tendency of the total
number of users, which suggests that a certain ratio of users
use a Skype client at home. Some users seem to keep their
computer switched on during the night period.

The total number of active calls (Fig. 3) also follows similar
daily fluctuation. Calls are coming more frequently in the
daytime, though we can also recognize some surprising
activity in the 1.00-6.00 AM interval, which suggests some
“night birds” among the users or overseas calls.

The calls seem to be shorter in the daytime and definitely
longer in the 9 PM – 1 AM period, which could be reasonable,
because the users have more free time for chatting at night.
However, we could detect only about 130 calls during the 24
hour period. For this reason, we do not want to draw far-
reaching consequences.

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

Fr
eq

ue
nc

y

Bandwidth of speech flows (Kbit/sec)

Histogram of bandwidth of speech flows (one direction)

Figure 4. Histogram of the bandwidth of Skype speech flows in Callrecords 2

dataset

There is only a small ratio of active Skype users who initiate

calls indeed. Most of the users seem to prefer chat service or
just to stay connected and reachable if needed.

The next two figures (Fig. 4, Fig. 5) show the bandwidth
and the packet rate of the detected Skype calls. Fig. 4 shows

that the bandwidth of Skype calls is usually between 18 and 70
Kbps, typically around 40 Kbps. Fig. 5 shows three peaks in
the histogram of the packet rate of Skype speech flows, which
correspond to the typical three inter-arrival times (20, 30 and
60 ms). It can be seen that packet rates smaller than the typical
ones (16, 33 and 50 packets/sec) also occur. The reason for
this is that the termination of a flow cannot be determined
accurately in some cases.

10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

35

40

45

Fr
eq

ue
nc

y

Packet rate of speech flows (Packets/sec)

Histogram of packet rate of speech flows
(one direction)

Figure 5. Histogram of the packet rate of Skype speech flows in Callrecords 2

dataset

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

35

40

Fr
eq

ue
nc

y

Average packet size of speech flows (byte)

Histogram of average packet size of speech flows (including headers)

Figure 6. Histogram of the average packet size of Skype speech flows in

Callrecords 2 dataset

The average packet size of Skype speech flows is plotted in

Fig. 6. The figure shows that the typical packet size (including
IP and TCP/UDP headers) is somewhere between 100 B and
200 B, which is also confirmed by our test measurements.
Smaller packet size – and bandwidth – occur in one direction
when separate inbound and outbound TCP flows belong to the
call.

Fig. 7 shows the histogram of the duration of Skype calls.
Due to the few sample (few calls) it is hard to determine the
exact distribution, but it seems to be an exponential-like
distribution.

VII. CONCLUSION

We proposed a novel Skype identification algorithm based
on observable parts of Skype protocol. First, candidate Skype
hosts are detected using traditional IP and port-based
identification together with a special signaling flow
identification method. Then Skype calls are discovered
exploiting the properties of speech flows, timing of voice
packet and candidate hosts found in the first step. The
algorithm uses only packet headers and the extracted flow-
level information, but no packet payload is necessary. It
expects logged (offline) data as input.

We also presented the validation of the identification of the
algorithm based on a test measurement in our department. In
addition, we showed some analyses results of a 24h real data
set from an ADSL domain in Hungary including properties of
calls and daily fluctuation of Skype users and calls.

0 1000 2000 3000 4000 5000 6000 7000
0

10

20

30

40

50

60

70

80

90

100

Fr
eq

ue
nc

y

Holding time of calls (sec)

Histogram of holding time of Skype calls

Figure 7. Histogram of the duration of Skype calls in Callrecords 2 dataset

ACKNOWLEDGEMENT

The authors are grateful to Ericsson Hungary Ltd for the
financial support and to P. Varga and L. Kovács for their help
in the traffic measurement.

REFERENCES
[1] S. Ehlert, S. Petgang, “Analysis and Signature of Skype VoIP Session

Traffic”, Technical Report NGNI-SKYPE-06b, Fraunhofer FOKUS,
Berlin, Germany

[2] W. Ghandour, “Blocking Skype Using Squid and OpenBSD”, Help Net
Security (www.net-security.org), 2005

[3] S. Guha et al., “An Experimental Study of the Skype Peer-to-Peer VoIP
System”, in Proc. of IPTPS'06, Santa Barbara, USA, 2006

[4] Kuan-Ta Chen et al., “Quantifying Skype User Satisfaction”, in Proc. of
SIGCOMM, Pisa, Italy, 2006

[5] Skype Technologies S.A., “Skype - Guide for Network Administrators”,
2005

[6] S. A. Baset, H. Schulzrinne, “An Analysis of the Skype Peer-to-Peer
Internet Telephony Protocol”, in Proc. of INFOCOMM'06, Barcelona,
Spain, 2006

[7] K. Suh, et al., “Characterizing and Detecting Skype-Relayed Traffic”, in
Proc. of INFOCOMM'06, Barcelona, Spain, 2006

[8] Fabrice Desclaux, “Skype uncovered”, EADS, 2005
[9] P. Biondi, F. Desclaux, “Silver needle in the Skype”, EADS, 2006
[10] T. Dinh Dang et al., “On the Identification and Analysis of P2P Traffic

aggregation”, in Proc. of Networking 2006, Coimbra, Portugal, 2006

