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1 Introduction

Since the �rst e�cient reaction to the phenomenon of congestion collapse in the early In-

ternet, congestion control, mostly performed by the Transmission Control Protocol (TCP),

has played an important role in communication networks [1]. Continuously evolving net-

work environments have made signi�cant research demand on designing more and more ef-

fective transport protocols. As a result, several TCP versions have been developed in order

to �t the ever-changing requirements of communication networks [2, 3]. Although, current

high speed TCP variants provide e�cient solutions for many network environments, they

all fail to act as a universal mechanism considering heterogeneous and changing network

conditions. It seems that there is a little hope that TCP's closed-loop congestion control

mechanism could result in such a universal solution in the future.

Another well-known drawback of TCP is its bu�er space need, which is at least of

root order in the number of competing �ows [4]. However, even this requirement imposes

a serious challenge in all-optical networks where only very small bu�er sizes can be real-

ized due to both economical and technological constraints [5]. On the other hand, optical

networks using electro-optic and optic-electro conversion to avoid the previously men-

tioned constraints, pay the price in high conversion times, which considerably reduces the

potential performance of the optical medium.

Concerning the limitations of TCP there is a signi�cant justi�cation to rethink the

concept of this transport protocol and design it from scratch, omitting the main TCP-

related features, most interestingly its congestion control mechanism. Some ideas have

already been proposed and investigated where congestion control was not employed at

all. One of these ideas was outlined by GENI (Global Environment for Network Innova-

tions), which advocates a Future Internet without congestion control [6] by suggesting

e�cient erasure coding schemes to recover lost packets. However, no realization or further

re�nement of the idea has been published so far with the exception of some related work

that we overview in the followings.

A decongestion controller was proposed by Raghavan and Snoeren who studied its

bene�ts [7]. Bonald et al. investigated the network behavior in the absence of congestion

control [8]. Their surprising result is the confutation of the common belief that operating

a network without congestion control necessarily leads to congestion collapse. López et al.

analyzed a fountain based protocol using game theory [9]. They showed that a Nash equi-

librium can be achieved, and at this equilibrium, the performance of the network is similar

to the performance obtained when all hosts comply with TCP. Botos et al. suggested a

transport protocol based on the modi�cation of TCP for high loss rate environment using
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rateless erasure codes [10]. In their proposal the well-known slow-start and congestion

avoidance algorithms of TCP are used, but some modi�cations are suggested to avoid the

dramatic decrease of the sending rate in case of high packet loss.

In this report we do not advocate any modi�cation to TCP, but rather we consider

a clean-slate redesign of the Internet and propose a feasible Future Internet architecture

where congestion control is not employed, and end hosts send their data at maximal rates

while fair scheduling is responsible for providing fairness among competing �ows. Such

an architecture can be considered the most e�cient one, because the network would al-

ways be fully utilized by hosts sending at maximal rates, and therefore, each additional

capacity would immediately be consumed. We emphasize the simplicity of our solution

since by employing our suggested digital fountain based erasure coding scheme for data

transfers, packet loss would become inconsequential, which can considerably simplify net-

work routers and can result in highly reduced bu�er sizes, which would favor all-optical

networking. Concerning stability, we can also expect improvements since maximal rate

sending would result in more predictable tra�c patterns by avoiding the high extent of

rate variation seen in TCP transmissions. This would make tra�c engineering a much

easier task as well.

The report is stuctured as follows. Section 2 presents our newly developed transport

protocol called Digital Fountain based Communication Protocol (DFCP) including the

main design principles and some implementation details. In Section 3 the results of a

comprehensive performance analysis carried out in a testbed environment are provided.
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2 Protocol Design

2.1 Overview

DFCP is a connection-oriented transport protocol, which can be found in the transport

layer of the TCP/IP stack, and similar to TCP it ensures reliable end-to-end communi-

cation between hosts. The operation of the protocol consists of three main steps, namely

connection establishment, data transfer and connection termination. However, unlike TCP

our protocol does not use any congestion control algorithm, just encodes the data using

Raptor codes and sends the encoded data towards the receiver at maximal rate making

possible to carry out a very e�cient operation. In this case, e�cient means that available

resources in the network can be fully and quickly utilized without experiencing perfor-

mance degradation. Although, coding needs an extra overhead, it will be shown in the

following section that this approach has many advantages and can eliminate several draw-

backs of TCP. DFCP has been implemented in the Linux kernel version 2.6.26-2 and it

has been tested under the Debian Lenny distribution [11].

2.2 Protocol Header

S2 (32)

S3 (32)

Data

Offset (4) Flags (6)

Checksum (16)

Source port (16) Destination port (16)

Block ID (32)

S1 (32)

Figure 1. Protocol header structure

The protocol header can be seen in Figure 1 including the name of each �eld and

its size in bits. The source and destination ports give the port numbers used for the

communication between the sender and receiver applications. Since packets are organized

into blocks, the block ID identi�es the block to which the given packet belongs. The

�elds S1, S2 and S3 contain 32-bit unsigned integers, which play roles in the encoding

and decoding process. The o�set gives the number of 32-bit words in the header, and

hence where the �rst bit of the application data can be found. Flags (e.g. SYN, FIN )

are primarily used in the connection establishment and termination phases, which are
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discussed in details in the following subsection. The checksum is a generated number

depending on the content of the header and partially on the data �eld.

2.3 Connection Establishment and Termination

DFCP connection establishment is based on a three-way handshake procedure as in the

case of TCP [12]. The handshaking mechanism is designed so that the sender can negotiate

all the parameters necessary for decoding with the receiver before transferring application

data. When the data are successfully received by the destination host, the connection is

released similarly to TCP.

2.3.1 Creating a Connection

1. First, a SYN segment is sent to the destination host including the information used

in the decoding process at the receiver side, and a timer is started with a timeout of 1

second. After transmitting the SYN segment the sender gets into SYN_SENT state.

If no reply is received before the timeout expires, the SYN segment is retransmitted

and the timeout is doubled. After 5 unsuccessful retry the connection establishment

process is aborted, and the resources are released at the sender.

2. If the SYN segment is received by the destination host, it gets into SYN_RECV

state and sends a SYNACK segment to the source host. The SYNACK message

also contains information for the coding process and it is retransmitted a maximum

of 5 times if necessary as in the case of SYN segment.

3. After receiving the SYNACK segment the source host sends an ACK segment to the

destination and gets into ESTABLISHED state. When the ACK is received by the

destination it also gets into ESTABLISHED state indicating that the connection

is successfully made. If the ACK segment is lost, it can be detected at the sender

by receiving SYNACK again. When the SYNACK message cannot be delivered 5

times the connection is closed, which is indicated by an RST segment.

2.3.2 Closing the Connection

1. When one of the hosts wants to terminate the connection it sends a FIN segment

to the other side, and the state of the sender is changed to FIN_WAIT1. Similar

to the connection establishment phase a timeout and retransmitting is used for

FIN messages. If the acknowledgement is not received after 5 times of retry, the

connection is closed and the resources are released.
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2. The receiver sends an ACK message as a reply to the FIN segment and gets into

CLOSE_WAIT mode while the state of the sender is changed to FIN_WAIT2.

After that the sender transmits a FINACK message to the destination host. If the

receiver also wants to close the connection, it sends a FINACK segment to the sender

and gets into LAST_ACK state. FINACK can be retransmitted a maximum of 5

times similar to the FIN message.

3. By receiving the FINACK segment the sender gets into TIME_WAIT state and

sends an ACK message to the receiver. Since the receiver can retransmit the FI-

NACK segment, it can be detected if the ACK segment is lost. After waiting in

TIME_WAIT state for a given time, the resoures are released. When the receiver

gets the ACK message its state is changed to CLOSE and the resources are released

at this side as well.

2.4 Coding and Data Transfer

Once a connection is successfully established the protocol is ready to send application

layer data. First, data are divided into blocks and each of them is stored in a kernel bu�er

until free space is available. After that DFCP performs encoding for the waiting blocks

sequentially.

LDPC coding

LT coding

redundant bytes

Figure 2. Encoding phases of message blocks

As shown in Figure 2, Raptor coding [13] involves two phases: precoding and LT

coding [14]. In our implementation precoding is realized by LDPC (Low-Density Parity-

Check) coding [15], which adds some redundant bytes to the original message symbols.

LT coder uses the result of the LDPC coding phase as input and produces a potentially

in�nite stream of encoded bytes.

The concept of LDPC coding is the following. Let us consider a bipartite graph having

nm nodes at the left side and nc nodes at the right side. The nodes on the left and right

sides are referred as messages nodes and check nodes, respectively. An example is shown in

Figure 3. As we can see, for each check node it holds that the sum (XOR) of the adjacent

message nodes is 0. In the latest version of the protocol, LDPC codes are generated by
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using a given probability distribution, and the initial value of the check nodes is set to

0. A speci�c degree d is calculated for each message node, which determines the number

of its neighbors. After that d check nodes are selected by using a uniform distribution.

These check nodes will be the neighbors of the actual message node, and the new values

of check nodes are computed as follows:

cr = cr ⊕mi (1)

where cr denotes the randomly chosen check node and mi is the actual message node.

The value of a message node is associated with a byte of the original message. From the

application layer the LDPC encoder receives k bytes and it extends the original message

by n−k redundant bytes, and as a result the length of the extended message will be n. In

the current implementation of DFCP the size of the original message block is k = 63536

and n − k = 2000 redundant bytes are added, thus the encoded length is n = 65536.

It is an important part of the LDPC coding process that a random generator is used at

both sender and receiver sides. The intial state of the random generator is determined by

three variables (S1, S2 and S3), which are exchanged through the SYN and SYNACK

segments.

x1 + x2 + x3 + x4 + x6 + x8 + x10 = 0

x1 + x3 + x4 + x7 + x8 + x9 + x10 = 0

x2 + x4 + x8 = 0

x1 + x5 + x7 + x8 + x9 + x10 = 0

x3 + x4 + x5 + x7 + x9 = 0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

Figure 3. Example of an LDPC code

The second phase of the Raptor coding process is the LT coding, for details please

see [15]. As mentioned above, messages are divided into blocks, which are considered

as units for coding. Each block consists of packets. If a packet is transferred the actual

state of the random generator based on the initial state and the block ID is included in
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its header, and therefore, the receiver can successfully perform LT decoding. The packet

header also contains the block ID so that the receiver can determine to which block the

given packet belongs.

2.5 Flow Control

To determine if the next block can be sent, a sliding window mechanism is applied at

the sender. The window size gives the maximum number of unacknowledged blocks in the

network. It can be set to an arbitrary value in DFCP, and the main purpose is to control

the burstiness of data transfer. Once a block is received by the destination host, it returns

an acknowledgement to the source host. The sliding window shifts by one unit, and the

next block is sent. To ensure in-order delivery DFCP assigns a continuously increasing

unique identi�er to each block in the protocol header, hence the receiver can recover the

original order of blocks automatically. Finally, received blocks can be decoded with high

probability.

2.6 Main Parameters

Since DFCP is currently under development, it is important to make possible to experi-

ment by adjusting some protocol speci�c parameters. In the newest version of the protocol

the following parameters can be set:

Window size. It controls the number of blocks within a window. Since DFCP

uses cumulative acknowledgements, they are sent upon the destination host receives

the last block of the window, hence, it also determines the frequency of sending

acknowledgements.

Redundancy. It gives the number of redundant bytes added to the original message.

Knowing the value of this parameter the coding overhead can be exactly calculated,

and therefore, the bandwidth waste can be determined. It is crucial for the e�cient

operation of DFCP how the redundancy paramter is set. The higher the value, the

higher the packet loss rate it can resist against. During the performance evaluation

we adjusted the redundancy parameter to an optimal value in many cases. Optimal

redundancy is the minimum coding overhead assuming a given loss rate that is

necessary for successful data transmission and decoding at the receiver side. In the

latest version of DFCP the optimal value can be found manually for a given network

environment, but it is a possible option to perform this task by an adaptive algorithm

of the protocol, so it will be part of our future research.
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Acknowledgements. ACKs can be switched ON or OFF that is advantageous for

experimental reasons. The purpose of using acknowledgements is twofold: (1) it gives

a feedback to the sender about the blocks successfully received by the destination

host, and (2) controls the speed of the sender, so it prevents over�ow at the receiver

side. In OFF state we can investigate the properties of the maximal rate sending

mechanism by ignoring many subsidiary factors.

Encoding and decoding. Encoding and decoding can be switched ON or OFF

independently of each other to study the impact of the Raptor codec implementation

on the performance of DFCP. If encoding is set to OFF, only the �rst block is

encoded making possible to ignore the overhead of the encoding process. In this

case all message blocks are replaced by this block and it is sent instead of the

original blocks. If decoding is switched OFF, decoding is not performed, but it can

be determined by the receiver that successful decoding would be possible or not.

It is very important to separate the coding process from our new mechanism to

get a clear picture about its features. Our main purpose is not to optimize the

implementation of the Raptor coding scheme because of the fact that now it is an

intesively investigated research area. We would like to examine and prepare a novel

concept, which may be able to serve as a universal mechanism for Future Internet.
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3 Testbed Analysis

To investigate the behavior of the DFCP protocol in realistic network conditions, a com-

prehensive performance analysis was carried out in a testbed environment for di�erent net-

work topologies and test scenarios. We analyzed the most important performance metrics

including goodput, link utilization and �ow completion time. To emphasize the bene�cial

properties of DFCP we compared it to di�erent TCP versions, namely TCP Cubic which

is the default congestion control algorithm in the Linux kernel and TCP NewReno with

SACK option.

Table 1. Hardware components of test computers

Component Type and parameters

Processor Intel R⃝ CoreTM2 Duo E8400 @ 3 GHz

Memory 2 GB DDR2 RAM

Network adapter TP-Link TG-3468 Gigabit PCI-E

Operating system Debian Lenny with modi�ed kernel

(a) Hardware components of senders and receivers

Component Type and parameters

Processor Intel R⃝ CoreTM i3-530 @ 2.93 GHz

Memory 2 GB DDR2 RAM

Network adapter TP-Link TG-3468 Gigabit PCI-E

Operating system FreeBSD 8.2

(b) Hardware components of the network emulator

The measurement setup consisted of senders, receivers and a Dummynet network em-

ulator, which was used for simulating various network parameters such as queue length,

bandwidth, delay and packet loss probability [16]. Each test computer was equipped with

the same hardware components according to Table 1.

S DDummynet
cB cB

Figure 4. Dumbbell topology with one source-destination pair

The �rst experiments were performed on a simple dumbbell topology with one source

and destination as shown in Figure 4. The measurement duration was 60 seconds for each

test, and the �ow completion times longer than this duration were calculated by using
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the steady-state goodput. Regarding the network parameters only the packet loss rate

and the round-trip time were varied. The bu�er size was set to a high value in order to

exclude it from the limiting factors, and the bottleneck link had a capacity cB = 1 Gbps.

In these scenarios we used the goodput (i.e. the number of useful bytes transferred per

second) as the performance metric.

S1

S2

D1

D2

Dummynet
cB cB

c1

c2

Figure 5. Dumbbell topology with two source-destination pairs

We also performed experiments with two competing �ows of the same type to study

the fairness properties of the investigated transport protocols. The second measurement

setup can be seen in Figure 5 where all parameters were set similarly as described at the

�rst dumbbell topology complemented by the condition c1 = c2 = 1 Gbps. The �ows were

started together and we used WFQ (Weighted Fair Queueing) as the scheduling method

with equal weights (i.e. 50-50%) [17].

During the testbed measurements the parameters of the Dummynet network emulator

were set as below:

queue length: queue = 10000

bandwidth: bw = 0 (unlimited)

packet loss rate: plr was changed

delay: delay was changed

The following subsections present our analysis results. By default we used optimal

redundancy parameters in DFCP, but in some cases the redundancy parameter was �xed

and adjusted to a certain rate of packet loss that is marked in the caption of the �gures.
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3.1 Dumbbell Topology with Individual Flows
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(a) Goodput for increasing packet loss
rate using optimal redundancy parame-
ters in DFCP
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(b) Goodput for increasing packet loss
rate using a �xed redundancy parameter
in DFCP adjusted to packet loss of 1%

Figure 6. Goodput for increasing packet loss rate with di�erent parameter settings
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(a) Goodput for increasing round-trip
time without packet loss
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(b) Goodput for increasing round-trip
time and di�erent packet loss rates

Figure 7. Goodput for increasing round-trip time
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(a) Packet loss rate = 0.1%
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(b) Packet loss rate = 1%

Figure 8. Transient behavior for di�erent loss rates
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(a) RTT = 10 ms
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(b) RTT = 100 ms

Figure 9. Transient behavior for di�erent round-trip times
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(b) Di�erent round-trip times

Figure 10. Transferred data in function of time for di�erent loss rates and round-trip times
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(a) Web object
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(b) DVD

Figure 11. Flow completion times for di�erent loss rates
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(a) Web object
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Figure 12. Flow completion times for di�erent round-trip times
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(b) Di�erent round-trip times

Figure 13. FCT ratios for di�erent packet loss rates and round-trip times
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Figure 14. Flow completion times for di�erent round-trip times and changing loss rates
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3.2 Dumbbell Topology with Two Competing Flows
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(b) Intra-protocol fairness of DFCP and
TCP variants

Figure 15. Two competing �ows with the one having a �xed RTT of 10 ms and the other
one having an RTT varied between 10 and 100 ms
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(a) Goodput for increasing packet loss
rate
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(b) Link utilization for increasing packet
loss rate

Figure 16. Goodput and link utilization for two competing �ows with equal loss rate

    0.1 0.2 0.5 1 2 5
0

50

100

150

200

250

300

350

400

Packet loss rate [%]

G
oo

dp
ut

 [M
bi

t/s
]

 

 

DFCP flow 1
DFCP flow 2
Cubic flow 1
Cubic flow 2
Reno flow 1
Reno flow 2

(a) Goodput for increasing packet loss
rate
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(b) Link utilization for increasing packet
loss rate

Figure 17. Goodput and link utilization for two competing �ows with di�erent loss rates
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Figure 18. Flow completion times for two competing �ows with di�erent round-trip times,
d1 = 10 ms, d2 is variable
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(a) Web object
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(b) DVD

Figure 19. Flow completion times for two competing �ows with equal loss rate (redundancy
parameter is adjusted to packet loss of 5%)
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Figure 20. Flow completion times for two competing �ows with di�erent loss rates (re-
dundancy parameter is adjusted to packet loss of 5%), p1 = 0.1%, p2 is variable
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