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1 Introduction

Recommender systems are information filtering tools that help users in information
overload to find interesting items (products, content, etc). Users get personalized rec-
ommendations that contain typically a few items deemed to be of user’s interest. The
relevance of an item with respect to a user is predicted by recommender algorithms;
items with the highest prediction scores are displayed to the user.

The core of the recommender system is the recommender algorithm that ranks the
items for the users based on their relevance. Recommender algorithms are usually
sorted into five main approaches [13], out of which the two most prominent strategies
are collaborative filtering (CF) and content-based filtering (CBF). CF algorithms use
only the user–item interactions (also called events or transactions). The assumption of
CF is that two users are similar if they consumed similar items; and two items are similar
if they have been consumed by similar users [15]. CBF algorithms use item metadata
(e.g. author, genre, etc.). First, the metadata of the items is analyzed using text mining
and methods from information retrieval [2]. User profiles are built from the metadata
of items the user liked/disliked using machine learning. Preferences are predicted by
matching the user profile with item metadata [9]. CF algorithms are the most accurate
amongst the pure approaches in a generic situation, e.g. they are more accurate than
CBF methods if sufficient preference data is available [10].

CF algorithms can be classified into memory-based and model-based ones. The
former are neighbor methods that make use of item or user rating vectors to define
similarity, and they calculate recommendations as a weighted average of similar item or
user rating vectors (e.g. [5, 12, 7]). In the last decade, model-based methods gained
enhanced popularity, because they were found to be much more accurate in the Netflix
Prize [4], a community contest launched in late 2006 that provided the largest explicit
benchmark data set (100M ratings) for a long time. Model-based methods build gener-
alized models that intend to capture user preference. The most successful approaches
are the latent factor algorithms. These represent each user and item as a feature vector
in a K dimensional latent feature space.

Matrix factorization: The most well-known latent feature based algorithms are
matrix factorization (MF) methods (e.g. [3, 16, 11, 17, 6, 14]). Matrix factorization
methods organize ratings or preferences into a matrix (R), whose dimensions are the
users and the items. If user u rates item i with a rating r then Ru,i = r. R is a large
matrix, but very sparse. The concept behind matrix factorization is to approximate
R as the product of two low rank matrices (R̂ = (M (U))TM (I)), referred to as feature
matrices. One of the feature matrices belongs to the users (M (U)) and the other to the
items (M (I)). The uth row of the user feature matrix is the latent feature vector (of K
length) for user u. Latent feature vectors are also assigned to items in a similar fashion.
The predicted rating/preference of user u on item i is the dot product of their feature

vectors, i.e. R̂u,i = (M
(U)
u )TM

(I)
i .

Feedback types: Depending on the nature of the user–item interactions, recom-
mendation problems can be classified into explicit and implicit feedback based problems.
Explicit feedback is provided by the users, usually in the form of ratings, and it explic-
itly encodes their preferences on the items. The classic explicit feedback based task
is rating prediction, where the goal of the algorithm is to accurately estimate missing
ratings of the users on items. The goal of a recommender system however is to present
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a small number of items to the users that are interesting/useful to them. For this the
recommender has to rank the items first (based on their relevance to the given user) and
return the first few items on this ranked list. This task is called the topN recommenda-
tion. The result of rating prediction can be transformed to topN recommendations by
recommending items with the highest predicted ratings for a given user. Good rating
prediction not necessarily translates to good topN recommendation.

Implicit feedback is collected via monitoring the behavior of users while they use a
service (e.g. a web shop). User interaction is not required in order to get the feedback,
therefore it is available in large quantity. This is of key importance in practical scenarios.
However preferences must be inferred from the interactions. The presence of an user
action on an item is considered to be a noisy sign of positive preference. It is even
harder to infer negative feedback as the absence of an event can be traced back to
multiple causes, the most common being that the user does not know about the item.
Algorithms working with the implicit problem should consider the “missing” feedback
in some way.

Context-awareness: Context-aware recommender systems (CARS)[1] consider ad-
ditional information (termed contextual information or briefly context) besides user–
item interactions. The hypothesis of context-aware recommendations is that they can
significantly improve recommendation accuracy, because: (1) Context related effects can
be handled during training. For example, certain shifts in the behavior, like seasonal
changes, are only understandable with the proper context provided. For algorithms
that do not consider context, these variations seem to be semi-random and can not be
handled properly, thus the result will be similar to learning on noisy data. (2) Recom-
mendation lists can be tailored according to the actual value of the context, which may
influence the users’ needs.

Evaluation of recommender algorithms: The offline evaluation of topN rec-
ommenders w.r.t. recommendation accuracy is as follows. For a given user–context
configuration setting all items are ranked by their predicted preference (r̂). Evaluation
metrics are calculated on a test set that does not take part in the training in any form.
The relevant items for a user–context configuration (i.e. query) are defined as the items
on which the user has events under the given context in the test set. Recommended
items are the first N items taken from the ranked list of items generated for the query.
Generally, I use N = 20; results with N = 10 and N = 5 are usually correlate. It is
important to note that I rank all items during evaluation.

There are several metrics for measuring recommendation accuracy. I mostly use
recall@N that is the ratio of recommended and relevant items to the relevant items. In
other words, it is the proportion of test events that were ranked above in the first N
places of their corresponding recommendation list. Recall is a good proxy for certain
recommendation settings and usually correlates well with click-through rate (CTR), a
commonly used online evaluation metric.
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2 Research outline

This work focuses on solving the context-aware implicit feedback based recommendation
task with factorization and is heavily influenced by the practical considerations. The
aim of the research is to integrate context and eventually other types of information (e.g.
metadata) into factorization algorithms in order to increase recommendation accuracy
for implicit feedback based topN recommendations. Context is defined as in event
context (associated with the transactions, not with the entities of the transaction). The
main metric for recommendation accuracy is recall@20.

I use two types of context, seasonality and sequentiality throughout this work. The
practical importance of these context dimensions is that they can be easily created for
almost all implicit dataset. They only require that timestamps are associated with the
transactions, that is very common in practice.

Seasonality: Many application areas of recommender systems exhibit the season-
ality effect, because periodicity can be observed in many human activities. Therefore
seasonal data is an obvious choice for context [8]. First we have to define the length of
the season. Within a season we do not expect repetitions in the aggregated behavior of
users, but we expect that at the same time offset in different seasons, the aggregated
behavior of the users will be similar. The length of the season depends on the data.
Once we have this, we need to create time bands (bins) within seasons that are the
possible context-states. Time bands specify the time resolution of a season, which is
also data dependent. In the final step, events are assigned to time bands according to
their time stamp.

Sequentiality: In some domains, like movies or music, users consume similar items.
In other domains, like electronic gadgets or e-commerce in general, they avoid items
similar to what they already consumed and look for complementary products. Sequential
patterns can be observed in both domain types. Sequentiality as a context dimension was
introduced by me in [P2] and uses the previously consumed item by the user as a context
for the actual item. This information helps in the characterizations of repetitiveness
related usage patterns and sequential consumption behavior.

The evaluation of methods and algorithms is done on five genuine implicit feedback
datasets. Three of these are public, two are proprietary.

2.1 Injecting information into matrix factorization through initializa-
tion

The first step of this research is to examine if additional information can be used in
pure CF factorization methods to increase recommendation accuracy without having
to modify the base algorithm. The first step of matrix factorization algorithms is to
initialize the feature matrices with random values which will be modified by the training
procedure. The idea is to start the factorization from a more sensible starting point,
i.e. initialize the item and/or the user feature vectors using information other than the
transactions. This way different kinds of information can be injected into the model.
Although this does not result in a context-aware solution, it can increase accuracy.

Three main initialization processes are examined. The initialization of feature vectors
builds on the observation that feature vectors of similar items are similar. However
similarity can be defined in different ways and the additional information can be used
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for it as well. All three methods start by defining a descriptor matrix for the items
(or users) by using the additional information (e.g. metadata or context). Then this
descriptor matrix is factorized so we get latent representations for the items and for the
entities of the other dimension (metadata terms or context-states). From here there are
different possibilities:
• Since the item features of similar items should be similar after the factorization,

use the item features from this initial factorization.
• Similarity can be defined between the descriptor vectors, but the computation of

the similarity matrix between items is infeasible in practice. But the similarities
can be approximated using the latent feature vector. By realizing that the similar-
ity matrix is the product of the descriptor matrix and its transpose, latent feature
vectors can be computed for the items – using the feature matrices of the factorized
descriptor matrix – so that the similarities between feature vectors approximate
the similarity of the descriptor vectors. These feature vectors then can be used for
initialization.
• The similarity of items can also be defined as the similarity of how similar they are

to other items. While the computation of the exact values is practically infeasible,
a method similar to the previous one can be used to compute feature vectors whose
relations approximate this similarity.

These methods are used to enhance iALS, a commonly used implicit feedback based
matrix factorization method. There is a significant increase in the accuracy compared to
random initialization. I also compare metadata and context based initialization and find
that context-based generally ranks higher, but their combination can further increase
accuracy.

2.2 Context-aware factorization algorithms

In the next part of the research I developed two context-aware algorithms that work
efficiently on implicit feedback data. Both algorithms assume the data that is repre-
sentable in an ND dimensional tensor R. One dimension of the tensor corresponds to
the users (user IDs), one to the items (item IDs), while the other ND − 2 dimension is
associated with different context dimensions. R contains only zeroes and ones. Let a
given element of the tensor be ru,i,c1,··· ,cND−2 = 1 if user u has (at least one) event on

item i while the context-state of jth context dimension was cj . Due to its construction,
all elements of R are known (i.e. there are no missing “ratings”) however the proportion
of ones is very low. This construction of the preference tensor basically assumes that
the presence of an event signals positive preference and the absence of an event (i.e.
missing feedback) is a sign of negative preference. Since the missing feedback is clearly
a weaker signal of negative preference than the presence of positive feedback I construct
the W(i1, . . . , iND

) weight function that assigns a real value to every possible entity
combination. In practice, the construction of W(·) depends on the problem, and can
also affect the complexity of the training. For the sake of simplicity assume that W(·)
is 1 for missing events and 100 · #(i1, . . . , iND

) for non-missing ones. The algorithms
optimize for weighted sum of squared errors (equivalent of optimizing for weighted root
mean squared error), where the target is R and weights come from W(·). The algo-
rithms optimize the feature matrices using alternating least squares (ALS). This means
that at a given time all but one feature matrices are fixed and the non-fixed one is
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computed as the least squares solution (given the other, fixed matrices). This process
iteratively decreases the value of the loss function. The naive ALS approach on a fully
filled tensor (like R) would scale poorly, but careful separation of the computations and
precalculation of certain statistics allow the training to be efficient.

The difference between the two algorithms is the preference model, i.e. the expression
which is used to compute the predicted preferences.

iTALS: The iTALS algorithm estimates the preferences of user u on item i under
the given values of the context dimensions as sum of the values in the Hadamard prod-
ucts (also known as elementwise product) of the corresponding feature vectors. To be
less precise, the preference is given by the dot product between the ND corresponding
vectors. This model is referred to as the N-way interaction model (or N-way model for
short). The following expression describes the model formally1:

r̂i1,...iND
= 1T

(
M1

i1 ◦M
2
i2 ◦ · · · ◦M

ND
iND

)
(1)

Generally, this model assumes that all dimensions interact with every other dimension
and their interaction results in a preference value. From the recommendation perspec-
tive, this model reweights the user–item interaction with a context-configuration depen-
dent feature vector (that is the product of more than one feature vectors if ND > 3).

iTALSx: The method is originally designed to work with three dimensions (users,
items and one context). The preference of user u on item i under the given value of
the context dimension is predicted as the sum of the dot products between the user
and item feature vector, the user and context feature vector and the item and context
feature vector. This model is referred to as the pairwise interaction model or pairwise
model for short. The model is given by the following expression:

r̂u,i,c = 1T
(
M (U)

u ◦M (I)
i + M (U)

u ◦M (C)
c + M

(I)
i ◦M (C)

c

)
(2)

In this model the preference is predicted as the composite of a user–item interaction, a
context dependent user bias and a context dependent item bias. The context dependent
user bias (i.e. user–context interaction) does not take part in the ranking, because
recommendations are generated for a given user under a given context-state, thus its
value is the same for all items. However it can reduce the effect of context related shifts
in the training data, that would be considered noise by a simple matrix factorization.

Complexity: The complexity of one epoch (i.e. computing each matrix once) is
O(NDN

+K2 +
∑ND

i=1 SiK
3) for both algorithms, where ND, N+, K are the number

of dimensions, events and features and Si is the size of the ith dimension (i.e. number
of items/users/context-states). Thus the algorithms scale linearly with the number of
events. Due to the large number of transactions and the growth rate of the set of
transactions, this property is very beneficial in practice. The algorithm scales cubically
with the number of features in theory. However NDN

+ �
∑ND

i=1 Si and K is small in
practice, thus the first term dominates. Therefore the algorithm scales quadratically
with the number of features in practice.

Comparison: iTALS and iTALSx are compared to (a) a matrix factorization
method, (b) a context-aware baseline that is a composite of MF models and (c) to
each other; using both seasonality and sequentiality. Key findings are:

1Biases are omitted for clearer presentation.
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• iTALS and iTALSx both significantly outperform matrix factorization and the
context-aware baseline in terms of recommendation accuracy.
• The proposed sequentiality context significantly increases accuracy compared to

the context free and to the seasonality based solutions.
• The learning capabilities of iTALS are higher, however its model is more sus-

ceptible to noise and to the blurring effect of low factor models. Thus iTALS
can outperform iTALSx when the number of features is sufficiently large or if
the dataset is denser. These results imply that one should use iTALSx when the
dataset is sparse and we can not afford high feature models.

2.3 Speeding-up ALS-based factorization

The training time of the algorithms is key aspect for practical applicability. Faster
training allows to (1) capture a more recent state of the system modeled (advantageous
for any system, but required for ones where the lifetime of the items is short or new
items appear constantly); (2) retrain the models more frequently; (3) apply trade-off
between running times and accuracy by using more features or running more epochs. I
propose two approximate methods that significantly speed up ALS-learning, especially
if the number of features is high, that is, the gain in speed increases as the number of
features increases.

The bottleneck of computations in ALS is solving a system of linear equations of
size K ×K. The proposed methods avoid to directly solve this system.

ALS-CD: The first method uses coordinate descent. Here all but one model param-
eter is fixed at a given time and a single feature value is computed at once instead of
a vector. This reduces the matrix inversion in solving the system to a simple division.
The application of this strategy for the implicit setting is not straightforward, because
negative examples (missing) events have to be considered as well. I overcome this issue
by compressing the missing events into K + 1 examples.

ALS-CD does not approximate the ALS solution, but gives similar results. The
complexity of iTALS/iTALSx using ALS-CD is O(NDK

3 + NDN
+NIK +

∑ND
i=1 SiK

2)
– where NI is the number of inner iterations – which is linear in K for the range of
practically used values, because NDN

+NI dominates ND and
∑ND

i=1 Si.
ALS-CG: The second method uses the conjugate gradient method to approximate

the solution of the system of equations. The efficiency of this solver relies on the efficiency
of a matrix–vector multiplication between the coefficient matrix and a vector. The
coefficient matrix in this case is the sum of a precomputed matrix and a dyadic sum.
Therefore the multiplication can be done very efficiently.

If the number of inner iterations equals to K ALS-CG gives the exact same result as
ALS. However good approximations can be achieved by using significantly less iterations.
The complexity of iTALS/iTALSx using ALS-CG is O(NDN

+NIK + NIK
2
∑ND

i=1 Si)
which is linear in K for the range of practically used values.

Comparison: Compared to ALS the speed-up is significant. The speed-up factor
is ∼ 10.6 for CG and ∼ 2.9 for CD if K = 200 (and it becomes even greater for larger
K values). For the more commonly used K = 80, the speed-up is ∼ 3.5 and ∼ 1.3 for
CG and CD, respectively. The accuracy results are very similar for the three methods
and the deviations are insignificant most of the times. This means that the proposed
speed-ups can be used without sacrificing the accuracy.
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Compared to one another, CG has more advantageous properties: it is faster, more
stable, slightly more accurate and its direct approximation of ALS is beneficial.

2.4 GFF & preference modeling with context

As we have seen with iTALS and iTALSx, different preference models are appropriate
for different situations. Certain parameters of the factorization (e.g. number of features)
and the dataset (e.g. sparsity) are beneficial for one or the other model. Most factoriza-
tion methods only use one of these two models (N-way, pairwise), although the number
of possible models grows exponentially as the number of dimensions increases. It is also
interesting to observe that both of these models are symmetrical, i.e. all dimensions fill
the same role; meanwhile there are two distinguished dimensions in every recommen-
dation task, the user and the item. The preference model has an effect on the learning
procedure. It is especially problematic if transformations and separation of the compu-
tations are required in order to maintain low complexity. And this is exactly the case
with the implicit feedback problem. For example iTALS and iTALSx seem very similar,
but there are crucial steps that are different and even rely on different precomputed
statistics.

The lack of proper exploration of preference modeling is due to the lack of flexible
tools in which one can experiment with various models without being required to imple-
ment a specific algorithm for each model. I therefore created the General Factorization
Framework (GFF), a single, flexible algorithm that takes the preference model as an
input and computes latent feature matrices for the input dimensions. GFF allows us
to easily experiment with various linear models on any context-aware recommendation
task, be it explicit or implicit feedback based. GFF opens up a new research path in
preference modeling under context.

The following properties were important at the design of GFF.
• No restriction on context: GFF works on any context-aware recommendation prob-

lem independently of the number and the meaning of context dimensions.
• Large preference model class: the only restriction on the preference model is that

it must be linear in the dimensions of the problem2. This intuitive restriction does
not restrict the applicability to real-world problems.
• Data type independence: besides the practically more useful implicit case, explicit

problems can be also addressed by simply changing the weighting scheme in the
loss function.
• Flexibility: the weighting scheme of GFF is very flexible, enabling to incorpo-

rate extra knowledge through the weights such time decay, dwell time dependent
weighting, missing not at random hypotheses and more.
• Scalability: GFF scales well both in terms of the number of interactions in the

training set and in the number of features. This makes it applicable in real life
recommender systems.

GFF allows for experimentation with novel preference models. Using a 4 dimensional
context-aware setting (users, items, seasonality, sequentiality) I defined the following
components from which models can be assembled:
• UI: Interaction between users and items, the classic CF model.

2Meaning that a dimension can not directly interact with itself in the model
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• USI, UQI, USQI: The context value dependent reweighting of the user–item
relation, i.e. the context influences how the users interact with items. More context
dimensions can be used for reweighting. But the more we use, the more sensitive
it becomes to noise and more latent features are required for filtering this out [P4].
• US, UQ: The user–context interaction produces a context dependent user bias

that does not play role during the ranking but has noise filtering properties during
training. We allow only one context in these interactions, because additional
contexts would assume that different context dimensions interact somehow.
• IS, IQ: The item–context interaction results in a context dependent item bias

that helps in ranking as well as in learning. Only one context is allowed in these
interactions.
• SQ: Interactions between the two context dimensions. Required for the tradi-

tional pairwise model.
From these parts I created models that consider certain aspects of the recommenda-

tion task. The examined models are:
• Interaction model (UI + USI + UQI): This model is the composite of the

base behavior of the users (UI) and their context-influenced modification of this
behavior (USI and UQI). This model assumes that the preferences of the users
can be divided into context independent and dependent parts. In the latter the
user–item relation is reweighted by a context dependent weight vector. USQI is
not included due to the noisiness of reweighting by more than one weight vector
simultaneously.
• Context interaction model (USI+UQI): Preferences in this model are mod-

eled by solely context dependent parts, i.e. it assumes that user–item interactions
strongly depend on the context and this dependency affects the whole interaction
rather than solely the items or users.
• Reduced pairwise model (UI+US+IS+UQ+IQ): This model is a minor

variation of the traditional pairwise model with the exclusion of the interaction
between context dimensions (SQ). The interaction with context is done separately
by users and items, i.e. it does not affect the whole user–item relation.
• User bias model (UI + US + UQ): Here it is assumed that only the user

interacts with the other dimensions. This results in a model where the user–item
relation is supported by context dependent user biases. Note that during recom-
mendation the user biases are constant, thus do not affect the ranking. However
they might filter out some context related noise during training.
• Item bias model (UI+IS+IQ): This model assumes that the effect of context

can be described by context dependent item biases (e.g. items are popular under
certain conditions). The item biases affect the ranking as well as filter context
related noise during training.
• A complex model (UI +US+ IS+UQ+ IQ+USI +UQI): This model

is the composite of the reduced pairwise and the interaction model. It can be
also treated as a reduced 3-way interaction model from which the context-context
interactions are omitted.

Experimental results indicate that these novel models are fit for the task more than
the traditional ones as their accuracy is generally higher. The interaction model performs
the best (closely followed by the context interaction model). These two models are also
intuitively fit the task well. Note that the number of features affects the ranking of the
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models. Lower number of features is beneficial to models with low order interactions,
while models with higher order of interactions work better if the number of features is
high. The interaction model works really well in the range of practically used values for
the number of features.

3 Organization of the dissertation

The first chapter gives a high level overview of the field recommender systems, a more
specific one about the area of implicit feedback based context-aware factorization, speci-
fies the research problem and defines the general setup for experimentation. The second
chapter reviews related literature.

The following four chapters (from chapter three to six) cover the bulk of my research
in the area and describe my theses:
• Chapter 3 investigates the initialization of matrix factorization and presents two

methods that can be used to inject additional information (e.g. item metadata,
context) into matrix factorization without modifying the factorization algorithm.
The methods and findings form the first thesis group.
• Chapter 4 covers my context-aware factorization algorithms for implicit feedback

data. Both the iTALS (second thesis group) and iTALSx algorithms (third thesis
group) solve the task in a scalable way. Their comparison and the determination of
their appropriateness for a given problem is summed up in the fourth thesis group.
This chapter also introduces the sequentiality context dimension that is easy to
derive for almost all implicit feedback datasets and its usage can significantly
increase the recommendation accuracy.
• Chapter 5 focuses on improving the speed and the scalability w.r.t. the number of

features of the ALS training in factorization methods – such are the aforementioned
algorithms – without significant decrease in the recommendation accuracy. Two
speed-up methods are proposed and examined, one is based on coordinate descent,
the other is on conjugate gradient. The two methods are compared to each other
and to the naive ALS. The methods and the observations of the experiments form
the fifth thesis group.
• Chapter 6 proposes the General Factorization Framework (GFF), a single algo-

rithm that allows for efficient experimentation with different preference models
in the implicit feedback based context-aware setting. Using GFF, several novel
preference models are proposed that consider the specialties of the context-aware
recommendation task. These models are compared to traditional preference mod-
els in the area, like the N-way and the pairwise models. GFF, the novel models
and the experiments form the sixth thesis group.

The last three chapters of the dissertation sum the work, discuss the application of
the results and overview several paths of possible future research.
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4 Summary of the new results

Thesis Group 1: I proposed initializing matrix factorization using information on the
items (or users) to increase recommendation accuracy. (See Chapter ?? for details. The
methods and the results were published in [? P3].)

Thesis 1.1 I proposed to initialize the feature matrices of matrix factorization
methods based on the similarities of its entities instead of starting from randomly
initialized matrices. The initialization scheme is generic and thus can be applied
to any matrix factorization. It consists of two steps: (1) descriptor vectors are
assigned to the entities; (2) the descriptors are compressed to fit the size of the
feature vectors. I applied the scheme on implicit ALS and showed on five datasets
that this type of initialization can increase the recommendation accuracy measured
by recall and MAP.

Thesis 1.2 I proposed the SimFactor algorithm that yields feature vectors, which
preserve the original similarities between entities more accurately. SimFactor does
not require the computation of the similarity matrix (which would be infeasible). I
showed on five datasets that similarities are better estimated with this algorithms as
with pure compression of the descriptor vectors. I also showed that feature vectors
yielded by SimFactor are generally better for initializations than those produced by
pure compression.

Thesis 1.3 I proposed the Sim2Factor algorithm that is able to yield feature vec-
tors whose similarity approximates the similarity between entities, based on how
similar they are to the rest of the entities. Sim2Factor does not require the compu-
tation of the similarity matrix. I showed that feature vectors of this kind are useful
for initialization.

Thesis 1.4 I proposed to use context for describing entities. I showed that context
based descriptors are better for initialization than metadata based ones. I also
showed that the weighted combination of context and metadata based initializations
can further improve the recommendation accuracy.
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Thesis Group 2: I proposed the iTALS algorithm to solve the implicit feedback based
context-aware recommendation task. (See Section ?? of Chapter ?? for details. The
method and the results were published in [? ].)

Thesis 2.1 I developed iTALS, a tensor factorization method that uses pointwise
ranking via optimizing for weighted sum of squared errors. It estimates preferences
using the N-way interaction model, i.e. the sum of elements in the elementwise
product of feature vectors from each dimension. I showed that iTALS can be applied
to solve the implicit feedback based context-aware recommendation problem by using
ones and zeroes for positive and missing feedback respectively with higher weights
for positive feedback.

Thesis 2.2 I showed that iTALS significantly outperforms the non context-aware
implicit matrix factorization and the prefiltering based context-aware baseline with
respect to recommendation accuracy, measured by recall.

Thesis 2.3 I demonstrated that iTALS can be trained efficiently on the implicit
feedback based context-aware recommendation problem, using alternating least
squares. I showed that iTALS can be efficiently used in practice as it scales lin-
early with the number of events and quadratically with the number of features in
the range of practically useful number of feature values.

Thesis Group 3: I proposed the iTALSx algorithm an alternative solution to the im-
plicit feedback based context-aware recommendation task. (See Section ?? of Chapter ??
for details. The method and the results were published in [P4? ].)

Thesis 3.1 I developed iTALSx, a tensor factorization method that uses pointwise
ranking via optimizing for weighted sum of squared errors. It estimates preferences
using the pairwise interaction model, i.e. the sum of dot products between feature
vectors from each pair of dimensions. I showed that iTALSx can be applied to
solve the implicit feedback based context-aware recommendation problem by using
ones and zeroes for positive and missing feedback respectively with higher weights
for positive feedback.

Thesis 3.2 I showed that iTALSx significantly outperforms the non context-aware
implicit matrix factorization and the prefiltering based context-aware baseline with
respect to recommendation accuracy, measured by recall.

Thesis 3.3 I demonstrated that iTALSx can be trained efficiently on the im-
plicit feedback based context-aware recommendation problem, using alternating
least squares. I showed that iTALSx can be efficiently used in practice as it scales
linearly with the number of events and quadratically with the number of features
in the range of practically useful number of feature values.
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Thesis Group 4: I experimented with the iTALS and iTALSx algorithms, compared
them and identified easily accessible contexts. (See Section ?? Chapter ?? for details.
The results were published in [? P4? ].)

Thesis 4.1 I proposed to use sequentiality as context for recommendations. Se-
quentiality is the item with which the user previously interacted, before the current
one. I argued that this context information is available with every dataset where
transactions can be ordered based on their time of occurrence, which is common in
practice. I showed that using this information can significantly increase recommen-
dation accuracy to using no context and even to using seasonality as the context
in a wide variety of settings (dataset, algorithms, models, number of features).

Thesis 4.2 I compared the strengths and weaknesses of iTALS (N-way model) and
iTALSx (pairwise model). I found that the N-way model is more suitable when the
number of features is high and/or if the dataset is more dense; and the pairwise
model is better otherwise.

Thesis Group 5: I proposed ways to speed-up ALS learning through using approximate
methods. (See Chapter ?? for details. The methods and the results were published in
[P6].)

Thesis 5.1 I proposed a general, conjugate gradient based approximation for ALS
in ALS based factorization algorithms. I showed that this approximation scales
linearly with the number of features in the range of practically used number of
feature values. I showed that this allows the usage of higher factor models and
finding better trade-offs between running time and accuracy. I showed that the
recommendation accuracy is affected only in a minor way if the approximation is
used instead of the exact ALS.

Thesis 5.2 I proposed a general, coordinate descent based approximation for ALS
in ALS based factorization algorithms. I showed that this approximation scales
linearly with the number of features in the range of practically used number of
feature values. I showed that this allows the usage of higher factor models and
finding better trade-offs between running time and accuracy. I showed that the
recommendation accuracy is affected only in a minor way if the approximation is
used instead of the exact ALS.

Thesis 5.3 I compared the conjugate gradient and coordinate descent based ap-
proximate solutions from a wide variety of aspects. I showed that the conjugate
gradient based method is better, because it (a) follows the exact solution more
closely in terms of recommendation accuracy; (b) is faster; (c) scales better; and
(d) more stable.

Thesis 5.4 I determined a good trade-off between running time and recommenda-
tion accuracy for both approximate methods. I proposed to set the number of inner
iterations to 2 in order to get this trade-off.
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Thesis Group 6: I proposed a flexible algorithm by the name of GFF to allow for
experimentation with novel preference models. (See Chapter ?? for details. The method
and the results were published in [? ].)

Thesis 6.1 I developed GFF (General Factorization Framework), a single, flexible
factorization algorithms for the implicit feedback based context-aware recommen-
dation problem. The flexibility of GFF lies in taking the preference model as an
input. The model can use arbitrary number of dimensions and allows using any
linear interaction between the subsets of aforementioned dimensions. I demon-
strated that this flexibility allows for experimenting with novel preference models.
The data model of the basic GFF is the single attribute MDM, which is appropriate
for the context-aware problem in practice.

Thesis 6.2 I proposed several novel preference models for the context-aware rec-
ommendation task. I measured the usefulness of these models w.r.t. recommenda-
tion accuracy (measured by recall) on a four dimensional context-aware problem.
The context dimensions I used in this problem can be generally derived from all
practical datasets based on the timestamp of the events, making them especially im-
portant. I showed that there are multiple novel models that outperform traditional
models used in the literature.

Thesis 6.3 I showed that one of the proposed models, the interaction model gen-
erally performs well. This model is the composite of the user–item (UI) and the
context reweighted user–item (UCI) relations. It was the best on four datasets out
of five datasets and second on the fifth one. The best model on the fifth dataset is
the context interaction model that is closely related to the interaction model.

Thesis 6.4 I compared the recommendation accuracy of the best novel models in
GFF to that of the state-of-the-art factorization methods. The novel models in
GFF significantly outperformed the state-of-the-art on three out of five datasets
and gave similar results on one.

Thesis 6.5 I extended GFF to be compliant with the Multidimensional Dataspace
Model and to be able to incorporate additional information, e.g. session data and
item metadata more efficiently. The preliminary experiments I executed showed
that using session information can significantly increase recommendation accuracy.
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5 Application of the results

My research is heavily influenced by practical considerations.
• The first thesis group presents a relatively cheap way to inject additional infor-

mation into existing matrix factorization methods through initialization and thus
increase their accuracy.
• The second, third and fourth thesis groups focus on context-aware factorization

method in the realistic setting of implicit feedback data. Both iTALS and iTALSx
scale well with the number of transactions in this setting. The context dimensions
used here are also of practical considerations as they can be derived for any implicit
dataset that has timestamp associated with its events. The proposed sequentiality
context performs really well, as its usage can significantly increase recommendation
accuracy.
• The fifth thesis group focuses on improving the speed and scalability (w.r.t. the

number of features) of the ALS training in factorizations without sacrificing its
accuracy. This is really important in practice, because lower training times al-
low for more frequent retraining, finding better trade-offs between training time
and accuracy (e.g. by using more features, running more epochs, etc.) and using
computational resources more efficiently.
• The sixth thesis group focuses on an algorithm that allows for flexible experi-

mentations with different context-aware preference models. The need for such an
algorithm also originates from practice as traditional context-aware models do not
consider the specialties of the recommendation task (e.g. distinction of dimensions,
proper interactions between dimensions, etc.).

The algorithms and the know-how resulting from this work have been successfully
applied in practice. Some of the algorithms are implemented in the recommendation
engine of Gravity Research & Development Inc., a recommendation service providing
company with clients from all around the world in different domains. The algorithms
were used successfully in the live system as well as in other recommendation projects,
tenders and POCs. The domains of the application include but not limited to online
grocery shopping, VoD and live program recommendation on IPTV [P8], e-commerce
web shops and classified sites.

The results also greatly contribute to a project of the European Union’s Seventh
Framework Programme (FP7/2007-2013) by the name of CrowdRec3. CrowdRec aims
for creating the next generation of (practical) recommender systems by using context, in-
teractions with the users, analyzing streams and information from heterogeneous sources.
My work falls into the context related part of CrowdRec.

3Grant Agreement n◦610594
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